

C. U. SHAH UNIVERSITY Wadhwan City

FACULTY OF:- Computer Science

DEPARTMENT OF: - Master of Computer Applications

SEMESTER: -I

CODE: - 5CS01MMT1

NAME: -MATHEMATICS FOR COMPUTER SCIENCE

Teaching and Evaluation Scheme

Subject Code	Name of the Subject	Teaching Scheme (Hours)					Evaluation Scheme							
		Th	Tu	Pr	Total	Credits	Theory			Practical (Marks)				
								Sessional University Exam Exam			Internal		University	Total
							Marks	Hrs	Marks	Hrs	Pr/Viva	TW	Pr	
5CS01MMT 1	MATHEMATIC S FOR COMPUTER SCIENCE	4	-	-	4	4	30	1.5	70	3				100

Objectives:-

- The objective of this course is to present the foundations of many basic computer related concepts and provide a coherent development to the students for the courses.
- This course will enhance the student's ability to think logically and mathematically.

Prerequisites:-

Knowledge of basic concepts on Sets, different operations on sets, binary operations, functions.

Course outline:-

Sr.	Course Contents	Number
No.		of
		Hours
1	Introduction	6
	Importance & Purpose of Discrete Mathematical Structures; Applications; Set Theory, Functions,	
	Relations, etc.	
2	Mathematical Logic:	8
	Introduction, Connectives, statement formulas, principle of substitution, validity of arguments,	
	Quantifiers, Proof techniques.	

C. U. SHAH UNIVERSITY Wadhwan City

3	Lattices:	8
	Relation and ordering, partially ordered sets, Lattices as poset, properties of lattices, Lattices as	
	algebraic systems, sub-lattices, direct product and homomorphism, complete lattices, bounds of	
	lattices, distributive lattice, complemented lattices.	
4	Boolean Algebra:	8
	Introduction, definition and important properties of Boolean Algebra, Sub Boolean algebra, direct	
	product and homomorphism, join-irreducible, meet-irreducible, atoms, anti atoms	
5	Applications of Boolean Algebra:	12
	Boolean expressions and their equivalence, Minterms and Maxterms, Free Boolean algebra,	
	Values of Boolean expression, canonical forms, Boolean functions, representation of Boolean	
	function, Karnaugh maps, minimization of Boolean function, Quine-Mccluskey algorithm,	
	Application to Relational Database.	
6	Graph Theory:	10
	Basic concepts of Graph theory, paths, reachability and connectedness, matrix representation of	
	graph, trees.	
	Total hours	52

Learning Outcomes: -

- The student will be able to apply concepts to RDBMS, perform minimization of Boolean functions, shall learn the fundamentals representations methods of graphs and trees.
- They shall be able to use different logical reasoning to prove theorems.

Books Recommended:-

- 1. Discrete Mathematical Structures with Applications to Computer Science, **J. P. Tremblay and R. Manohar**, Publisher-Tata McGraw-Hill
- 2. Discrete Mathematical Structure, D. S. Malik, M. K. Sen, Publisher-Cengage Learning